

(10) Patent No.:

17.

(45) Date of Patent:

(12) United States Patent

Weber et al.

(54) METHOD FOR STRAIN IMPROVEMENT OF THE ERYTHROMYCIN-PRODUCING BACTERIUM

- (75) Inventors: J. Mark Weber; Minh B. Luu, both of Chicago, IL (US)
- (73) Assignee: FermaLogic Inc., Chicago, IL (US)
- (*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 09/153,599
- (22) Filed: Sep. 15, 1998

Related U.S. Application Data

- (60) Provisional application No. 60/059,079, filed on Sep. 16, 1997.
- (51) Int. Cl.⁷ C12N 15/74; C07H 21/04
- (52) U.S. Cl. 435/477; 536/23.1; 536/23.2
- (58) Field of Search 435/477; 536/23.1,
- 536/23.2

(56) References Cited

PUBLICATIONS

Claudio D. Denoya et al., A *Streptomyces avermitilis* Gene Encoding a 4–Hydroxyphenylpyruvic Acid Dioxygenase– Like Protein That Directs the Production of Homogentisic Acid and an Ochronotic Pigment in *Escherichia coli*, Journal of Bacteriology, Sep. 1994, pp. 5312–5319, vol. 176, No.

US 6,420,177 B1

*Jul. 16, 2002

W. Claiborne Fuqua et al., Characterization of *melA*: a gene encoding melanin biosynthesis from the marine bacterium *Shewanella colwelliana*, Gene, 1991, pp. 131–136, vol. 109.

Elizabeth E. Wyckoff et al., Coling and expression of a gene encoding a T-cell reactive protein from *Coccidiodes immitis*: homology to 4-hydroxyphenylpyruvate dioxygenase and the mammalian F antigen, Gene, 1995, pp. 107–111, vol. 161.

Ulla Rüetschi et al., Characterization of 4-hydroxyphenylpyruvate dioxygenase, Eur. J. Biochem., 1992, pp. 459–466, vol. 205.

J. Mark Weber et al., Organization of a Cluster of Erythromycin Genes in *Saccharopolyspora erythraea*, Journal of Bacteriology, May 1990, pp. 2372–2383, vol. 172, No. 5.

J. Mark Weber et al., The use of a chromosome integration vector to map erythromycin resistance and production genes in *Saccharopolyspora erythraea(Streptomyces erythraeus)*, Gene, 1988, pp. 173–180, vol. 68.

Primary Examiner—Ponnathapu Achutamurthy

Assistant Examiner—Peter P. Tung (74) Attorney, Agent, or Firm—Rockey, Milnamow & Katz, Ltd

(57) ABSTRACT

The present invention relates to a method of improving the strain used for the production of erythromycin through the disruption of the melA gene.

1 Claim, 6 Drawing Sheets

7	
C	פ
Ē	

U.S. Patent

FIG. 2

FIG. 3

FIG. 4A

FIG. 4C

FIG. 5

30

35

50

METHOD FOR STRAIN IMPROVEMENT OF THE ERYTHROMYCIN-PRODUCING BACTERIUM

RELATED APPLICATIONS

This application claims priority from U.S. Application No. 60/059,079 filed on Sep. 16, 1997.

GOVERNMENT FUNDING

Funds used to support some of the studies disclosed herein were provided by the United States Government (NIH Grant No. R44-AI34698-03.). The United States Government, therefore, may have certain rights in the invention.

TECHNICAL FIELD OF THE INVENTION

The field of this invention is erythromycin production. More particularly, the present invention pertains to a method of improving the strain used for the production of erythro- $^{\ 20}$ mycin through the disruption of the melA gene.

BACKGROUND OF THE INVENTION

Actinomycete fermentations are the source of many medically important pharmaceuticals, particularly antibiotics. The commercial production of these compounds is made more economical through genetic alterations in the producing organism, referred to as strain improvements, that are traditionally introduced through a random mutation and screening process (Queener, S. W. and D. H. Lively 1986. Screening and selection for strain improvement, p. 155–169. In Manual of Industrial Microbiology and Biotechnology. Eds. A. L. Demain and N. A. Solomon. American Society for Microbiology, Washington. 1986). The traditional process is tedious and time consuming, but is technically simple to perform. Its major drawback is that it is empirical; and during the 50 years that it has been practiced by industry, very little has been learned concerning the genetics of strain improvement.

More recently molecular genetic technology has been developed that allows for the introduction of "targeted" genetic alterations of industrially important strains. In particular, the erythromycin producing strain, Sac. ervthraea, has a well developed system for integrative 45 transformation, targeted gene replacement and disruption (Weber, J. M. and R. Losick, 1988, Gene 68, 173-180; Weber, J. M., J. O. Leung, G. T. Maine, R H. B. Potenz, T. J. Paulus and J. P. DeWitt, 1990, J. Bacteriol. 172, 2372-2383). This approach, though technically more difficult to perform, provides yield improvement results plus insight into the metabolic and genetic events that lead to strain improvement.

Although molecular genetic technology has been used in Sac. erythraea for the development of novel macrolide 55 structures (Cortes, J., K. E. Wiesmann, G. A. Roberts, M. J. Brown, J. Staunton, and P. F. Leadlay, 1995, Science 268:1487-1489.; Donadio, S., J. B. McAlpine, P. A. Sheldon, M. A. Jackson, L. Katz, 1993, PNAS USA 90:7119–7123), it has not yet been applied to the area of $_{60}$ erythromycin strain improvement.

Current strain improvement technology consists of an empirical and labor intensive process of introducing randomly produced mutations followed by large-scale bruteforce screening for better strains. Targeted gene disruption is 65 a way to rationally modify a strain of Saccharopolyspora to overproduce erythromycin. Currently there are no other

2

genes described whose inactivation will lead specifically and reproducibly to an improved erythromycin-producing strain. Erythromycin is a bulk pharmaceutical produced in the thousands of metric tons per year and the market for this bulk compound is approximately 600 million dollars per year. Any improvement in the production process that would lead to substantial increases in production would have significant economic implications.

BRIEF SUMMARY OF THE INVENTION

The method of the invention, herein described, includes the genetic modification of an erythromycin-producing microorganism through the targeted disruption of the melA gene with plasmid pFL1046 so that the microorganism is 15 transformed into a more efficient and more robust producer of erythromycin under conditions where oxygen is a limiting nutrient. Plasmid pFL1046 is a derivative of plasmid pFL14 which was isolated from a library of Sac. erythraea DNA fragments found during a visual blue-pigment screening procedure in S. lividans. The DNA sequence of a subclone of pFL14, pFL1040, is shown in FIG. 1 (SEQ ID NO:1) showing the coding sequence of the melA gene (SEQ ID NO:2) from Sac. erythraea. The alignment of the deduced amino acid sequence of the melA gene (SEQ ID NO:3) from 25 Sac. erythraea is compared to the sequence of melA genes from other organisms (FIG. 3 SEQ ID NOS:6-11). A very high degree of homology is seen to these other melA genes which further supports the fact that this gene is in fact involved in pigment biosynthesis in Sac. erythraea.

According to one aspect of the method of the invention, transformation of an erythromycin-producing microorganism into a more robust producer is accomplished by integrating, via homologous recombination, a plasmid constructed from a parent vector, pFL8 and a DNA fragment from the Sac. erythraea chromosome which is internal to the coding sequence of the 4-hydroxyphenylpyrivic acid dioxygenase (melA) gene. Integrative transformation of this plasmid into the Sac. erythraea chromosome disrupts the normal function of the melA gene which consequently blocks the production of pyomelanin pigment and slows the growth of the organism. This integrative plasmid is constructed to be capable of being stably maintained in the microorganism (i.e., of being passed faithfully in its active form from one generation to the next).

A microorganism embodying the present invention is a novel strain of Sac. erythraea with lower oxygen requirements for the production of erythromycin in an aqueous medium containing assimilable sources of nitrogen and carbon. The blockage of metabolic flow of oxygen into pigment biosynthesis and tyrosine metabolism reduces the strains requirement for oxygen, and indirectly slows the growth of the strain, but does not negatively affect erythromycin biosynthesis.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the nucleotide sequence and deduced amino acid sequence of the melA gene from Sac. erythraea and two incomplete open reading frames flanking melA on clone PFL1040. The nucleotide sequence between the convergent dashed arrows indicates the region that was amplified by PCR and cloned to make integrative plasmid pFL1046 which was used for the targeted disruption of the melA gene in the chromosome of Sac. erythraea. The putative ribosome binding site (GGGAGG) for the melA gene is also shown (underlined) and is located 6 bp upstream of the putative GTG start codon. Also shown are two ApaI sites internal to

60

the melA coding sequence that mark the boundaries of the DNA fragment that was used to prepare the probe for Southern hybridizations.

FIG. 2 shows the proposed metabolic pathway for the catabolism of tyrosine in Sac. erythraea showing the biochemical step in which the HPD enzyme acts in the biosynthesis of pyomelanin pigments. The arrow marked with an "X" represents the step in the pigment biosynthetic pathway that is blocked by the targeted disruption of the melA gene as described in the text. The disruption in the function of melA results in the block in tyrosine catabolism and pigment production.

FIG. 3 shows the alignment of the deduced amino acid sequence of the HPD-like proteins. Comparison of 15 sequences from Sac. erythraea (SACER) and S. avermitilis (STRAV) ((Denoya et al., 1994, J. Bacteriology 176 (17): 5312-5319) and five additional sequences from other organisms. PSESP, Pseudomonas species (Ruetschi, U., B. Odelhog, S. Lindstedt, J. Barros-Soderling, B. Persson, and 20 H. Jorvall, 1992, Eur. J. Biochem. 205:459–466); TETTH, T. thermophila F antigen (Hummel, R., P. Norgaard, P. H. Andreasen, S. Neve, K. Skjodt, D. Tornehave, and K. Kristiansen, 1992, J. Mol. Biol. 228:850-861); COIIM, Coccidioides immitis (Wyckoff, E. E., E. J. Pishko, T. N. 25 Kirkland, and G. T. Cole, 1995, Gene 161:107-111); SHECO, Shewanella colwelliana (Fuqua, W. C., V. E. Coyne, D. C. Stein, C.-M. Lin, and R. M. Weiner, 1991, Gene 109:131-136); HUMAN, (Ruetschi, U., A. Dellsen, P. Sahlin, G. Stenman, L. Rymo, and S. Lindstedt, 1993, Eur. 30 J. Biochem. 213:1081–1089). Shaded boxes indicate regions of identity. Dashes indicate gaps introduced to maximize alignment.

FIG. 4 shows an analysis of DNA from the melA-targeted disruption experiment. A. Diagram of insertion of plasmid pFL1046 (circle, top) into the chromosome of Sac. erythraea. Rectangle overlaying the melA arrow on the chromosome represents the area of cloned DNA which directed integration of the plasmid by homologous recombination into the chromosome. B. Southern analysis of chromosomal DNA from the parental and pFL1046 transformant strain. Purified DNA from the Sac. erythraea parent strain and the pFL1046 transformant strain was digested with BamHI or PstI, and DNA fragments were separated on a 0.8% agarose gel and transferred to nylon sheets (Hybond-N+, Amersham, UK) by a modification of the method of Southern (1975). Nylon sheets were probed with a DNA fragment that had been labeled using the Genius 1 (DIG) DNA labeling and detection kit (Cat. No. 1093 657). The DNA fragment used as the probe was prepared from plasmid pFL1040 digested 50 with ApaI to prepare a 762 bp fragment that was purified using GeneClean (Bio101, La Jolla, Calif.). The nucleotide sequence of the DNA fragment used as the probe is shown between the two ApaI sites (FIG. 1). C. Southern analysis showing a single hybridizing band for all Actinomycete 55 diluted 1:4 with sterile water prior to bioassay. strains tested except for S. azureus.

FIG. 5 shows the effect of melA disruption on the production of erythromycin by Sac. erythraea. Fermentations were performed according to the method described hereinafter. Erythromycin concentrations were determined by the agar plate bioassay method, also described hereinafter.

DETAILED DESCRIPTION OF THE **INVENTION**

Bacterial strains and plasmids. The FL359 strain of Sac- 65 charopolyspora erythraea ATCC 11635 was used as the parent strain and the host in transformation experiments.

This strain was obtained from the ATCC11635 strain. The DH5alpha strain (Hanahan, 1983) was used for experiments performed in E. coli.

Chemicals and Biochemical Reagents. Erythromycin A (Em), tetrazolium chloride, was obtained from Sigma. Thiostrepton (Ts) was provided by S. J. Lucania (Bristol Meyers Squibb, N.J.).

Media and handling. E20A agar medium per 1 liter aqueous solution: 5 g bacto-soytone, 5 g soluble starch, 3 g CaCO₃, 2.1 g MOPS buffer, and 20 g bacto-agar. E29F broth medium for 1 liter: 22 g nutrisoy flour (ADM); 15 g soluble starch (Difco); 3 g CaCO₃ (J. T. Baker); *0.5 g MgSO₄-7H₂O; *0.015 g FeSO₄.7H₂O, 50 ml soybean oil. R2T2 regeneration plates (Weber, J. M., B. Schoner, and R. Losick, 1989, Gene 75, 235-241; Weber, J. M., C. K. Wierman, and C. R. Hutchinson, 1985, J. Bacteriol. 164, 425–433) were used for the selection of transformants using both Sac. erythraea and S. lividans host strains. Tryptic Soy Broth (TSB, Difco Laboratories, Detroit, Mich.), prepared according to manufacturers recommendations.

Construction of pFL1046. PCR primer sequences used for amplification of the melA gene-fragment cloned into pFL1046 were the following: 5"gtaagettegaceagatgegeeag3" (SEQ ID NO:12) and 5"tggaattccctcttgccgaccgcc3" (SEQ ID NO:13). The location of the primer sequences and the direction of primer elongation are indicated in the DNA sequence diagram (FIG. 1). EcoRI and HindIII restriction sites were added to the ends of the primers to facilitate cloning of the final PCR product into the multicloning region of plasmid pFL8.

Fermentation protocol for the production of erythromycin by Sac. erythraea under oxygen-limitation conditions in shake flasks. Spores of Sac. erythraea were transferred asceptically from a slant or plate culture to 4 mL of sterile 35 TSB broth in duplicate 16×125 mm capped test tubes. Test tube cultures were grown in a shaker for 2 days at 32° C. at a 10° angle. The contents of one tube (3.5 mL due to evaporation) were mixed with the duplicate tube. A 3 mL 40 portion of the mixture was transferred to 30 mL of E29F medium. Note that oxygen limitation conditions were determined empirically to be encountered in 250 ml shake flasks containing 30 ml of broth or more and shaking at 500 rpm on a shaker with a one inch circular orbit. Weights were 45 recorded of flasks after inoculation; the cultures were grown in 250 mL non-baffled shake flasks for 5 days at 32° C., 500 rpm (one inch rotary displacement). After 5 days, the color of the culture was recorded and the flasks were re-weighed and adjusted to their original weight through the addition of water to compensate for water lost due to evaporation. The cultures were also streaked onto agar plates to check for contamination. Cells were then pelleted by centrifugation and the broth was decanted into 50 mL plastic Corning tubes for storage at 4° C. until they were bioassayed. Broth was

Bioassay for erythromycin. A large plate (Corning Costar, Cambridge, Mass., 245 mm square bioassay dish cat. no. 431111), double-agar layer system was used. The bottom agar layer consisted of 100 mL TSB agar. Once solidified (sitting 1 hour at room temperature) a top agar layer was poured. Top agar consisted of 100 mL TSB agar containing 200 μ L 1% tetrazolium red and a sufficient quantity of B. subtilis thiostrepton-resistant spores to produce a confluent lawn of growth. The upper layer was solidified at room temperature for 1 hour with lid slightly open, or the plate was placed open in a laminar flow hood to remove any moisture from the surface of the plate. Broth samples were

25

30

35

spotted (15 μ L) onto ¹/₄ inch bioassay discs (Schleicher and Schuell, Keene, N.H.) and let dry for 30 min. Standard erythromycin solutions were prepared at 5, 10, 25, 50, 100, and 250 μ g/mL and used to wet bioassay discs which were dried and stored at room temperature and placed onto the plate at the time the dried experimental samples were applied. The bioassay plate was incubated overnight at 37° C. Following incubation, the zones were measured, and converted to concentrations using the standard curve produced for each plate.

Cloning and analysis of the melA gene from Sac. erythraea. As part of a study to identify genes that affect erythromycin biosynthesis, a genomic library of Sac. erythraea DNA was screened for clones that stimulated the production of blue pigments in S. lividans. One of these clones, pFL14, carried in the Streptomyces/E. coli bifunctional plasmid pFL8 was found to stimulate blue pigment production in the presence of thiostrepton and soybean media.

Following the identification of plasmid pFL14 from the S. 20 lividans prescreen, it was subsequently introduced in high copy into E. coli DH5alpha and found to cause production of brown pigments in liquid culture. Production of brown pigment was enhanced through subcloning to form the plasmid pFL1040 and supplementation of the growth medium with the amino acid L-tyrosine. Subsequently, subcloning and DNA sequence analysis (FIG. 1) revealed several open reading frames on this clone, but only one complete ORF was found on the clone and it was found to be responsible for the formation of the brown pigment in E. coli. This ORF was found to be homologous to a melA-like gene previously reported from S. avermitilis, involved in brown pigment biosynthesis in that strain and capable of producing brown pigment in E. coli as well ((Denoya et al., 1994, J. Bacteriology 176 (17): 5312-5319). The workers in S. avermitilis found that the deduced amino acid sequence of the gene showed a high degree of identity to the enzyme 4-hydroxyphenylpyruvic acid dioxygenase involved in the pyomelanin pigment biosynthetic pathway (FIG. 2); the melA genes from Sac. erythraea and S. avermitilis showed that they were 63.5% identical over the complete sequence (FIG. 4A). The melA genes of Streptomyces avermitilis and Sac. erythraea also show striking homology to genes from al., 1994, J. Bacteriology 176 (17): 5312-5319). While it is clear from our results and others that the melA gene is not essential for survival of Actinomycete species, the conservation of its amino acid sequence and the widespread occurrence of the gene in nature indicates it has played a 50 critical role during evolution.

Targeted disruption of the melA gene and effect on brown pigment formation. In order to disrupt melA, a 761 bp DNA fragment was generated by PCR which was internal to the coding sequence of the gene (FIG. 1 SEQ ID NOS: 1 and 2). 55 This internal fragment was cloned into plasmid pFL8 to generate pFL1046 (FIG. 4A) which was integratively transformed into Sac. erythraea ATCC 11635. Thiostreptonresistant transformants of Sac. ervthraea were obtained and analyzed by Southern analysis showing that the plasmid had inserted into the melA gene in the chromosome (FIG. 4B).

The disrupted strain was plated on E20A and E29F agar media with and without L-tyrosine supplementation. After one week incubation at 32° C. the colonies growing on E29F color, they also secreted a dark brown pigment in the surrounding medium. The E29F plates not containing 6

tyrosine supplementation were also brown, but not as dark as the plates containing tyrosine. On E20A plates, which is the standard agar medium for this strain, brown pigment production was not observed even on the agar containing additional tyrosine.

Survey of commercial and academic Actinomycete strains for melA homologs. Strains used for the commercial production of other antibiotics were obtained from the Ferma-10 Logic collection or the American Type Culture Collection (ATCC) and used for the preparation of total DNA from each strain. Total DNA was digested with BamHI and PstI and Southern blots were prepared for the two sets of digests with each enzyme and probed with a 762 bp internal ApaI fragment from the melA gene (FIG. 1 SEQ ID NOS: 1 and 2) from Sac. erythraea. The results (FIG. 4C) show clearly a single hybridizing band for all the Actinomycete strains tested except for one, S. azureus, the producer of thiostrepton, which showed no hybridizing band in either the BamHI digest or the PstI digest. The conditions used in the hybridization were stringent (65° C.), and yet the hybridizing bands produced a clear strong signal with little background indicating a high degree of homology between the probe DNA from Sac. erythraea and the homologous genes from the various species. The two non Actinomycete strains, E. coli, and B. subtilis, failed to show even a faint signal in this assay.

Effect of disruption of melA on erythromycin production. A comparative analysis of the parent strain and the melA blocked strain was performed in shake flask fermentations, as described above, to determine the effect of the melA mutation on the production of erythromycin. The results indicated that the melA blocked strain is a more robust strain and repeatedly produced significantly higher concentrations of erythromycin than the parent strain under conditions of oxygen limitation (FIG. 5). This is important because many Actinomycete fermentations are limited by oxygen supply, alignment of the predicted amino acid sequences of the two $_{40}$ and the economic loss of low yielding fermenter runs due to oxygen stress can be significant. The amount of the increase was consistently in excess of 50% over several experiments performed on different occasions. Culture broth extracts were inspected by thin layer chromatography; the results more distantly related species, including humans (Denoya et 45 show that the increase in bioactivity observed in the bioassay is due to an increase in production of erythromycin A, which is the most active and most desired product of the fermentation.

> The present invention provides a simple method for improving the erythromycin production efficiency of the Sac. erythraea fermentation under conditions of oxygen limitation. The yield improvement effect is caused by the targeted disruption of an melA-like gene, which is required for the biosynthesis of brown pigments. The mutation involves the targeted insertion of a plasmid, pFL1046 by homologous recombination into to the coding sequence of melA in such a way that transcription of melA is disrupted.

If the plasmid insertion mutation described here is found 60 to be beneficial to a commercial strain, a permanent mutation not involving the maintenance of a plasmid in the chromosome could be created using gene replacement technology that is well established for this strain (Weber, J. M., J. O. Leung, G. T. Maine, R H. B. Potenz, T. J. Paulus and agar with tyrosine supplementation were dark brown in 65 J. P. DeWitt, 1990, J. Bacteriol. 172, 2372-2383). This would create a permanent mutation that would not require maintenance of foreign DNA in the genome.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (iii) NUMBER OF SEQUENCES: 13
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2299 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCATGCGGTC	CATGCGCGCC	TGCACGGTTC	CGCGCGCCAC	GCCCAGCCGC	CGCGAGCACT	60
CCAGCACGCC	CAGCCTCGGC	TCGTCGGACA	GCAACAGCAG	CAGCCTGGCG	TCGAGCGCGT	120
CGAGGGCCTC	GTCCGCGCCG	GTGTCGTTGG	GAGCCACGTC	ACACCCCTTG	CTCAGTCTGA	180
CCAGTTGGAT	CGGGAAATCG	CCGCGAATGC	TGAGCAATTT	GTACAGCAGA	TCAAGGCTCT	240
GTTGCTCACC	GATCCCCTCC	CGCCGCAGTC	TGACGGTACA	AATCTTGTGA	CTTGGAAATC	300
GGGAGGGGCA	CCGTGACCGG	CACCATCGAC	CAAGGCCAGA	GCGGTCAGAT	CGACGACGTG	360
ACCTTCGACC	AGATGCGCCA	GCTCGTCGGC	CTGGTGGACC	ACGACGCGTC	CAAGGACCCG	420
TTCCCGGTCC	GCGCGATGGA	CGCGGTCGTG	TTCGTCGTGG	GCAACGCGAC	CCAGAGCGCG	480
CTGTTCTACC	AGGTCGCCTT	CGGCATGGAG	CTCGTCGCCT	ACTCCGGGCC	CGAGCACGGC	540
AACCGGGACC	ACAAGGCGTA	CGTGCTCAAG	TCGGGTTCGG	CCCGCTTCGT	GCTCAAGGGC	600
GCCGTCGACC	CGGACAGCCC	GCTGGCCGAC	CACCACCGCA	GGCACGGCGA	CGGCGTCGTG	660
GACCTCGCGC	TGGAGGTCAC	CGACGTCGAC	AAGTGCGTCG	AGCACGCCCG	CGCGCAGGGC	720
GCGACCGTGT	TGGAGGAGCC	GCACGAGGTC	TCCGACGACA	ACGGCACCGT	CCGCACCGCG	780
GCCATCGCGA	CCTACGGCGA	GACCCGCCAC	ACGCTGGTCG	ACCGCAGCCG	CTACCGCGGT	840
CCGTACCTGC	CGGGCTACGT	CGAGCGCACC	GGCAGCTACC	GCAAGCCCGA	GGGCGCGCCG	900
AAGCGGCTGT	TCCAGGCCGT	CGATCACTGC	GTCGGCAACG	TCGAGCTCGG	GAAGATGGAC	960
GAGTGGGTCG	CCTTCTACAA	CCGCGTCATG	GGCTTCGTGA	ACATGGCCGA	GTTCGTCGGT	1020
GACGACATCG	CCACCGAGTA	CTCGGCGCTG	ATGAGCAAGG	TCGTCGCCAA	CGGCAACCAC	1080
CGGGTGAAGT	TCCCGCTCAA	CGAGCCGGCG	GTCGGCAAGA	GGAAGTCGCA	GATCGACGAG	1140
TACCTGGAGT	TCTACCGCGG	CGCCGGCTGC	CAGCACATCG	CGCTGGCCAC	CGGCGACATC	1200
CTGACCACCA	TCAAGGCGAT	GCGCGAGGCC	GGGGTGGAGT	TCCTGGCCAC	GCCCGACTCC	1260
TACTACGACG	ACCCCGAGCT	GCGGGCCCGC	ATCGGCGAGG	TGCGGCTGCC	GATCGAGACG	1320
CTCAAGGAGC	ACGGCATCCT	CGTCGACCGC	GACGAGGACG	GCTACCTGCT	GCAGATCTTC	1380
ACCAAGCCGA	TCGGCGACCG	GCCGACCGTC	TTCTACGAGC	TGATCGAGCG	GCACGGTTCG	1440
CTGGGCTTCG	GCAAGGGCAA	CTTCAAGGCG	CTGTTCGAGG	CGATCGAGCG	CGAGCAGGAG	1500
CGCCGCGGCA	ACCTCTGACG	GTCGCGGCAC	CGCTGACGGT	GAGGGGCGGT	CCGACCGCGC	1560
CGGGGCGCTC	CTCACCTCCT	GGCGACCACG	ACGAACCCCG	CGGCCTCCAG	TTCCGAGAAG	1620
ACCTGTTCGC	GGTGCTCGGG	GCCGCGGGTC	TCCAGGCTGA	TCTCGACGTC	GACCTCGCCC	1680
AGCGCGAGGG	CACCGGCGAT	CCGGGAGTGC	TCGATGTCGA	TGACGTTGGC	CGACAGCGCG	1740
CCGAGCCGGG	CCAGCAGCCC	GGCAAGCGAA	CCCGGCCGGT	CCGGCAGCCG	CACCCGCAGC	1800

US 6,420,177 B1

9

-continued

GACAGGTAGC GGCCCGCCGA GGTCATGCCG TGCTGGATCA GCTGCAACAT CAGCAGCGGG	1860
TCGATGTTGC CGCCGGAGAG GACCACGGCG GTGGGCGAGC CGAACTGCTC CGGGTGCTCC	1920
AGCAGTCCGG CGACCGCCGC GACGCCGGCG GGTTCGACCA CCAGCTTCGC CCGTTCCAGG	1980
CACAGCAGCA GCGCGCGCGA GAGCGCCTCC TCCCCCACCG TGAGCACGTC GTCGACGAGC	2040
TCGCTGACGT GGGCGAAGGT CAGCTCGCTC GGCGCGGGGA CCGCGATGCC GTCGGCCATC	2100
GTCCGCTGGG TGTCGAGCAG AGCAACCGGT TTTCCCGCCG CCAGCGACGG CGGCCAGGCG	2160
GCGGCCTGCT CCGCTTGGAC GGCGAGCACC CGCACCTGCG GGTGCTCCGC CTTCACGGCC	2220
GCGGCGATGC CGCTGACCAG CCCGCCGCCG CCTGCGGGCA CCACCACTGT CCGGACGTCC	2280
GGCAACTGCT CCAGGATCC	2299
 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11203 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
GTG ACC GGC ACC ATC GAC CAA GGC CAG AGC GGT CAG ATC GAC GAC GTGVal Thr Gly Thr Ile Asp Gln Gly Gln Ser Gly Gln Ile Asp Asp Val151015	48
ACC TTC GAC CAG ATG CGC CAG CTC GTC GGC CTG GTG GAC CAC GAC GCG Thr Phe Asp Gln Met Arg Gln Leu Val Gly Leu Val Asp His Asp Ala 20 25	96
TCC AAG GAC CCG TTC CCG GCC GCG ATG GAC GCG GTC TTC GTC Ser Lys Asp Pro Phe Pro Val Arg Ala Met Asp Ala Val Val Phe Val 35 40 45 45 45	144
GTG GGC AAC GCG AGC CGG CTG TTC TAC CAG GTC GCC TTC GGC Val Gly Asn Ala Thr Gln Ser Ala Leu Phe Tyr Gln Val Ala Phe Gly 50 55 60 60 60 60 60 60	192
ATG GAG CTC GTC GCC TAC TCC GGG CCC GAG CAC GGC AAC CGG GAC CACMet Glu Leu Val Ala Tyr Ser Gly Pro Glu His Gly Asn Arg Asp His65707580	240
AAG GCG TAC GTG CTC AAG TCG GGT TCG GCC CGC TTC GTG CTC AAG GGCLys Ala Tyr Val Leu Lys Ser Gly Ser Ala Arg Phe Val Leu Lys Gly859095	288
GCC GTC GAC CCG GAC AGC CCG CTG GCC GAC CAC CAC CGC AGG CAC GGC Ala Val Asp Pro Asp Ser Pro Leu Ala Asp His His Arg Arg His Gly 100 105 110	336
GACGGCGTCGTGGACCTCGCGCTGGACGACGACGACAAGTGCAspGlyValValAspLeuAlaLeuGluValThrAspValAspLysCys115120125	384
GTC GAG CAC GCC CGC GCG CAG GGC GCG ACC GTG TTG GAG GAG CCG CAC Val Glu His Ala Arg Ala Gln Gly Ala Thr Val Leu Glu Glu Pro His 130 135 140	432
GAGGTCTCCGACGACAACGGCACCGTCCGCACCGCGGCCATCGCGACCGluValSerAspAspAspGlyThrValArgThrAlaAlaIleAlaThr145150155160	480
TAC GGC GAC CGC CAC ACG CTG GTA CGC AGC CGC CGC CGC GGT Tyr Gly Glu Thr Arg His Thr Leu Val Asp Arg Ser Arg Tyr Arg Gly 165 170 170 175	528

-continued

CCG Pro	TAC Tyr	CTG Leu	CCG Pro 180	GGC Gly	TAC Tyr	GTC Val	GAG Glu	CGC Arg 185	ACC Thr	GGC Gly	AGC Ser	TAC Tyr	CGC Arg 190	AAG Lys	CCC Pro	576	
GAG Glu	GGC Gly	GCG Ala 195	CCG Pro	AAG Lys	CGG Arg	CTG Leu	TTC Phe 200	CAG Gln	GCC Ala	GTC Val	GAT Asp	CAC His 205	тдС Сув	GTC Val	GGC Gly	624	
AAC Asn	GTC Val 210	GAG Glu	CTC Leu	GGG Gly	AAG Lys	ATG Met 215	GAC Asp	GAG Glu	TGG Trp	GTC Val	GCC Ala 220	TTC Phe	TAC Tyr	AAC Asn	CGC Arg	672	
GTC Val 225	ATG Met	GGC Gly	TTC Phe	GTG Val	AAC Asn 230	ATG Met	GCC Ala	GAG Glu	TTC Phe	GTC Val 235	GGT Gly	GAC Asp	GAC Asp	ATC Ile	GCC Ala 240	720	
ACC Thr	GAG Glu	TAC Tyr	TCG Ser	GCG Ala 245	CTG Leu	ATG Met	AGC Ser	AAG Lys	GTC Val 250	GTC Val	GCC Ala	AAC Asn	GGC Gly	AAC Asn 255	CAC His	768	
CGG Arg	GTG Val	AAG Lys	TTC Phe 260	CCG Pro	CTC Leu	AAC Asn	GAG Glu	CCG Pro 265	GCG Ala	GTC Val	GGC Gly	AAG Lys	AGG Arg 270	AAG Lys	TCG Ser	816	
CAG Gln	ATC Ile	GAC Asp 275	GAG Glu	TAC Tyr	CTG Leu	GAG Glu	TTC Phe 280	TAC Tyr	CGC Arg	GGC Gly	GCC Ala	GGC Gly 285	тGC Сув	CAG Gln	CAC His	864	
ATC Ile	GCG Ala 290	CTG Leu	GCC Ala	ACC Thr	GGC Gly	GAC Asp 295	ATC Ile	CTG Leu	ACC Thr	ACC Thr	ATC Ile 300	AAG Lys	GCG Ala	ATG Met	CGC Arg	912	
GAG Glu 305	GCC Ala	GGG Gly	GTG Val	GAG Glu	TTC Phe 310	CTG Leu	GCC Ala	ACG Thr	CCC Pro	GAC Asp 315	TCC Ser	TAC Tyr	TAC Tyr	GAC Asp	GAC Asp 320	960	
CCC Pro	GAG Glu	CTG Leu	CGG Arg	GCC Ala 325	CGC Arg	ATC Ile	GGC Gly	GAG Glu	GTG Val 330	CGG Arg	CTG Leu	CCG Pro	ATC Ile	GAG Glu 335	ACG Thr	1008	
CTC Leu	AAG Lys	GAG Glu	CAC His 340	GGC Gly	ATC Ile	CTC Leu	GTC Val	GAC Asp 345	CGC Arg	GAC Asp	GAG Glu	GAC Asp	GGC Gly 350	TAC Tyr	CTG Leu	1056	
CTG Leu	CAG Gln	ATC Ile 355	TTC Phe	ACC Thr	AAG Lys	CCG Pro	ATC Ile 360	GGC Gly	GAC Asp	CGG Arg	CCG Pro	ACC Thr 365	GTC Val	TTC Phe	TAC Tyr	1104	
GAG Glu	CTG Leu 370	ATC Ile	GAG Glu	CGG Arg	CAC His	GGT Gly 375	TCG Ser	CTG Leu	GGC Gly	TTC Phe	GGC Gly 380	AAG Lys	GGC Gly	AAC Asn	TTC Phe	1152	
AAG Lys 385	GCG Ala	CTG Leu	TTC Phe	GAG Glu	GCG Ala 390	ATC Ile	GAG Glu	CGC Arg	GAG Glu	CAG Gln 395	GAG Glu	CGC Arg	CGC Arg	GGC Gly	AAC Asn 400	1200	
CTC Leu	TGA															1206	
(2)	INFO	ORMA:	TION	FOR	SEQ	ID I	NO:3	:									
	(i)) SE((1 (1 (1	QUEN(A) L1 B) T D) T(CE CI ENGTI YPE: OPOLO	HARAG H: 40 amin OGY:	CTER D1 an no ao line	ISTIC mino cid ear	CS: acid	ls								
	(ii)) MOI	LECUI	LE T	YPE:	pro	tein										
	(xi) SE(QUEN	CE DI	ESCR	IPTI	ON: S	SEQ I	ED NO	D:3:							
Val 1	Thr	Gly	Thr	Ile 5	Asp	Gln	Gly	Gln	Ser 10	Gly	Gln	Ile	Asp	Asp 15	Val		
Thr	Phe	Asp	Gln 20	Met	Arg	Gln	Leu	Val 25	Gly	Leu	Val	Asp	His 30	Asp	Ala		
Ser	Lys	Asp 35	Pro	Phe	Pro	Val	Arg 40	Ala	Met	Asp	Ala	Val 45	Val	Phe	Val		

-continued

Val	Gly 50	Asn	Ala	Thr	Gln	Ser 55	Ala	Leu	Phe	Tyr	Gln 60	Val	Ala	Phe	Gly
Met 65	Glu	Leu	Val	Ala	Tyr 70	Ser	Gly	Pro	Glu	His 75	Gly	Asn	Arg	Asp	His 80
Lys	Ala	Tyr	Val	Leu 85	Lys	Ser	Gly	Ser	Ala 90	Arg	Phe	Val	Leu	Lys 95	Gly
Ala	Val	Asp	Pro 100	Asp	Ser	Pro	Leu	Ala 105	Asp	His	His	Arg	Arg 110	His	Gly
Asp	Gly	Val 115	Val	Asp	Leu	Ala	Leu 120	Glu	Val	Thr	Asp	Val 125	Asp	Lys	Cys
Val	Glu 130	His	Ala	Arg	Ala	Gln 135	Gly	Ala	Thr	Val	Leu 140	Glu	Glu	Pro	His
Glu 145	Val	Ser	Asp	Asp	Asn 150	Gly	Thr	Val	Arg	Thr 155	Ala	Ala	Ile	Ala	Thr 160
Tyr	Gly	Glu	Thr	Arg 165	His	Thr	Leu	Val	Asp 170	Arg	Ser	Arg	Tyr	Arg 175	Gly
Pro	Tyr	Leu	Pro 180	Gly	Tyr	Val	Glu	A rg 185	Thr	Gly	Ser	Tyr	Arg 190	Lys	Pro
Glu	Gly	Ala 195	Pro	Lys	Arg	Leu	Phe 200	Gln	Ala	Val	Asp	His 205	Сув	Val	Gly
Asn	Val 210	Glu	Leu	Gly	Lys	Met 215	Asp	Glu	Trp	Val	Ala 220	Phe	Tyr	Asn	Arg
Val 225	Met	Gly	Phe	Val	Asn 230	Met	Ala	Glu	Phe	Val 235	Gly	Asp	Asp	Ile	Ala 240
Thr	Glu	Tyr	Ser	Ala 245	Leu	Met	Ser	Lys	Val 250	Val	Ala	Asn	Gly	Asn 255	His
Arg	Val	Lys	Phe 260	Pro	Leu	Asn	Glu	Pro 265	Ala	Val	Gly	Lys	Arg 270	Lys	Ser
Gln	Ile	A sp 275	Glu	Tyr	Leu	Glu	Phe 280	Tyr	Arg	Gly	Ala	Gly 285	Cys	Gln	His
Ile	Ala 290	Leu	Ala	Thr	Gly	Asp 295	Ile	Leu	Thr	Thr	Ile 300	Lys	Ala	Met	Arg
Glu 305	Ala	Gly	Val	Glu	Phe 310	Leu	Ala	Thr	Pro	Asp 315	Ser	Tyr	Tyr	Asp	Asp 320
Pro	Glu	Leu	Arg	Ala 325	Arg	Ile	Gly	Glu	Val 330	Arg	Leu	Pro	Ile	Glu 335	Thr
Leu	Lys	Glu	His 340	Gly	Ile	Leu	Val	Asp 345	Arg	Asp	Glu	Asp	Gly 350	Tyr	Leu
Leu	Gln	Ile 355	Phe	Thr	Lys	Pro	Ile 360	Gly	Asp	Arg	Pro	Thr 365	Val	Phe	Tyr
Glu	Leu 370	Ile	Glu	Arg	His	Gly 375	Ser	Leu	Gly	Phe	Gly 380	Lys	Gly	Asn	Phe
Lys 385	Ala	Leu	Phe	Glu	Ala 390	Ile	Glu	Arg	Glu	Gln 395	Glu	Arg	Arg	Gly	Asn 400
Leu															

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Met Arg Asp Met Arg Ala Gln Val Thr Gly Arg Ala Val Gly Leu Arg Arg Ser Cys Glu Leu Val Gly Leu Arg Pro Glu Asp Ser Leu Leu Leu Leu Leu Arg Ala Asp Leu Ala Asp Leu Ala Glu Asp Ala Gly Thr Asp Asn Pro Ala Val (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Arg Arg Ala Val Val Val Phe Gly Ala Ala Glu Leu Glu Ser Phe Val Gln Glu Arg His Glu Pro Gly Arg Thr Glu Leu Ser Ile Glu Val Asp Val Glu Gly Leu Ala Leu Ala Gly Ala Ile Arg Ser His Glu Ile Asp Ile Val Asn Ala Ser Leu Ala Gly Leu Arg Ala Leu Leu Gly Ala Leu Ser Gly Pro Arg Asp Pro Leu Arg Val Arg Leu Ser Leu Tyr Arg Gly Ala Ser Thr Met Gly His Gln Ile Leu Gln Leu Met Leu Leu Pro Asp Ile Asn Gly Gly Ser Leu Val Val Ala Thr Pro Ser Gly Phe Gln Glu Pro His Glu Leu Leu Gly Ala Val Ala Ala Val Gly Ala Pro Glu Val Val Leu Lys Ala Arg Glu Leu Cys Leu Leu Leu Ala Arg Ser Leu Ala Glu Glu Gly Val Thr Leu Val Asp Asp Val Leu Glu Ser Val His Ala Phe Thr Leu Glu Ser Pro Ala Pro Val Ala Ile Gly Asp Ala Met Thr Arg Gln Thr Asp Leu Leu Ala Val Pro Lys Gly Ala Ala Leu Ser Pro Pro Trp Ala Ala Ala Gln Glu Ala Gln Val Ala Leu Val Arg Val Gln Pro His Glu Ala Lys Val Ala Ala Ala Ile Gly Ser Val Leu Gly Gly Gly Gly Ala Pro Val Val Val Thr Arg Val Asp Pro Leu Gln Glu Leu

Ile

(2)	INFO	ORMA	TION	FOR	SEQ	ID I	NO:6	:							
	(i)) SE((1 (1 (1 (1	QUENC A) LI B) T C) S D) T C	CE CI ENGTI YPE: IRANI DPOLO	HARAG H: 3 amin DEDNI DGY:	CTER: BO an no ao ESS: line	ISTIC mino cid sing ear	CS: acio gle	ls						
	(ii)) мој	LECUI	LE T	YPE:	prot	tein								
	(xi) SEQ	QUENC	CE DI	ESCR	IPTIC	ON: S	SEQ I	ID NO	0:6:					
Met 1	Thr	Gln	Thr	Thr 5	His	His	Thr	Pro	Asp 10	Thr	Ala	Arg	Gln	Ala 15	Asp
Pro	Phe	Pro	Val 20	Lys	Gly	Met	Asp	Ala 25	Val	Val	Phe	Ala	Val 30	Gly	Asn
Ala	Lys	Gln 35	Ala	Ala	His	Tyr	Ser 40	Thr	Ala	Phe	Gly	Met 45	Gln	Leu	Val
Ala	Ty r 50	Ser	Gly	Pro	Glu	Asn 55	Gly	Ser	Arg	Glu	Thr 60	Ala	Ser	Tyr	Val
Leu 65	Thr	Asn	Gly	Ser	Ala 70	Arg	Phe	Val	Leu	Thr 75	Ser	Val	Ile	Lys	Pro 80
Ala	Thr	Pro	Trp	Gly 85	His	Phe	Leu	Ala	Asp 90	His	Val	Ala	Glu	His 95	Gly
Asp	Gly	Val	Val 100	Asp	Leu	Ala	Ile	Glu 105	Val	Pro	Asp	Ala	A rg 110	Ala	Ala
His	Ala	Ty r 115	Ala	Ile	Glu	His	Gly 120	Ala	Arg	Ser	Val	Ala 125	Glu	Pro	Tyr
Glu	Leu 130	Lys	Asp	Glu	His	Gly 135	Thr	Val	Val	Leu	Ala 140	Ala	Ile	Ala	Thr
Tyr 145	Gly	Lys	Thr	Arg	His 150	Thr	Leu	Val	Asp	Arg 155	Thr	Gly	Tyr	Asp	Gly 160
Pro	Tyr	Leu	Pro	Gly 165	Tyr	Val	Ala	Ala	Ala 170	Pro	Ile	Val	Glu	Pro 175	Pro
Ala	His	Arg	Thr 180	Phe	Gln	Ala	Ile	A sp 185	His	Суз	Val	Gly	Asn 190	Val	Glu
Leu	Gly	Arg 195	Met	Asn	Glu	Trp	Val 200	Gly	Phe	Tyr	Asn	L y s 205	Val	Met	Gly
Phe	Thr 210	Asn	Met	Lys	Glu	Phe 215	Val	Gly	Asp	Asp	Ile 220	Ala	Thr	Glu	Tyr
Ser 225	Ala	Leu	Met	Ser	L y s 230	Val	Val	Ala	Asp	Gly 235	Thr	Leu	Lys	Val	Lys 240
Phe	Pro	Ile	Asn	Glu 245	Pro	Ala	Leu	Ala	Lys 250	Lys	Lys	Ser	Gln	Ile 255	Asp
Glu	Tyr	Leu	Glu 260	Phe	Tyr	Gly	Gly	Ala 265	Gly	Val	Gln	His	Ile 270	Ala	Leu
Asn	Thr	Gly 275	Asp	Ile	Val	Glu	Thr 280	Val	Arg	Thr	Met	Arg 285	Ala	Ala	Gly
Val	Gln 290	Phe	Leu	Asp	Thr	Pro 295	Asp	Ser	Tyr	Tyr	Asp 300	Thr	Leu	Gly	Glu
Trp 305	Val	Gly	Asp	Thr	Arg 310	Val	Pro	Val	Asp	Thr 315	Leu	Arg	Glu	Leu	Lys 320
Ile	Leu	Ala	Asp	Arg 325	Asp	Glu	Asp	Gly	Tyr 330	Leu	Leu	Gln	Ile	Phe 335	Thr
Lys	Pro	Val	Gln 340	Asp	Arg	Pro	Thr	Val 345	Phe	Phe	Glu	Ile	Ile 350	Glu	Arg

-continued

His	Gly	Ser 355	Met	Gly	Phe	Gly	L y s 360	Gly	Asn	Phe	Lys	Ala 365	Leu	Phe	Glu
Ala	Ile 370	Glu	Arg	Glu	Gln	Glu 375	Lys	Arg	Gly	Asn	Leu 380				
(2)	INFO	ORMA:	FION	FOR	SEQ	ID I	NO:7	:							
	(i)) SE((1 (1 (0 (1	QUEN A) L B) T C) S C) T	CE CI ENGTI YPE: TRANI	HARA H: 3 ami DEDN OGY:	CTER: 58 ar no ac ESS: line	ISTIC mino cid sing ear	cs: acio gle	ds						
	(ii)) MOI	LECU	LE T	YPE:	pro	tein								
	(xi)) SE(QUEN	CE D	ESCR	IPTIC	ON: S	SEQ :	ID NG	D:7:					
Met 1	Ala	Asp	Leu	Tyr 5	Glu	Asn	Pro	Met	Gly 10	Leu	Met	Gly	Phe	Glu 15	Phe
Ile	Glu	Leu	Ala 20	Ser	Pro	Thr	Pro	Asn 25	Thr	Leu	Glu	Pro	Ile 30	Phe	Glu
Ile	Met	Gly 35	Phe	Thr	Lys	Val	Ala 40	Thr	His	Arg	Ser	L y s 45	Asp	Val	His
Leu	Ty r 50	Arg	Gln	Gly	Ala	Ile 55	Asn	Leu	Ile	Leu	Asn 60	Asn	Glu	Pro	His
Ser 65	Val	Ala	Ser	Tyr	Phe 70	Ala	Ala	Glu	His	Gly 75	Pro	Ser	Val	Сув	Gly 80
Met	Ala	Phe	Arg	Val 85	Lys	Asp	Ser	Gln	L y s 90	Ala	Tyr	Lys	Arg	Ala 95	Leu
Glu	Leu	Gly	Ala 100	Gln	Pro	Ile	His	Ile 105	Glu	Thr	Gly	Pro	Met 110	Glu	Leu
Asn	Leu	Pro 115	Ala	Ile	Lys	Gly	Ile 120	Gly	Gly	Ala	Pro	Leu 125	Tyr	Leu	Ile
Asp	Arg 130	Phe	Gly	Glu	Gly	Ser 135	Ser	Ile	Tyr	Asp	Ile 140	Asp	Phe	Val	Phe
Leu 145	Glu	Gly	Val	Asp	Arg 150	His	Pro	Val	Gly	Ala 155	Gly	Leu	Lys	Ile	Ile 160
Asp	His	Leu	Thr	His 165	Asn	Val	Tyr	Arg	Gly 170	Arg	Met	Ala	Tyr	Trp 175	Ala
Asn	Phe	Tyr	Glu 180	Lys	Leu	Phe	Asn	Phe 185	Arg	Glu	Ile	Arg	Ty r 190	Phe	Asp
Ile	Lys	Gly 195	Glu	Tyr	Thr	Gly	Leu 200	Thr	Ser	Lys	Ala	Met 205	Thr	Ala	Pro
Asp	Gly 210	Met	Ile	Arg	Ile	Pro 215	Leu	Asn	Glu	Glu	Ser 220	Ser	Lys	Gly	Ala
Gl y 225	Gln	Ile	Glu	Glu	Phe 230	Leu	Met	Gln	Phe	Asn 235	Gly	Glu	Gly	Ile	Gln 240
His	Val	Ala	Phe	Leu 245	Ser	Asp	Asp	Leu	Ile 250	Lys	Thr	Trp	Asp	His 255	Leu
Lys	Ser	Ile	Gly 260	Met	Arg	Phe	Met	Thr 265	Ala	Pro	Pro	Asp	Thr 270	Tyr	Tyr
Glu	Met	Leu 275	Glu	Gly	Arg	Leu	Pro 280	Asn	His	Gly	Glu	Pro 285	Val	Gly	Glu
Leu	Gln 290	Ala	Arg	Gly	Ile	Leu 295	Leu	Asp	Gly	Ser	Ser 300	Glu	Ser	Gly	Asp
Lys 305	Arg	Leu	Leu	Leu	Gln 310	Ile	Phe	Ser	Glu	Thr 315	Leu	Met	Gly	Pro	Val 320

-continued

Phe	Phe	Glu	Phe	Ile 325	Gln	Arg	Lys	Gly	Asp 330	Asp	Gly	Phe	Gly	Glu 335	Gly
Asn	Phe	Lys	Ala 340	Leu	Phe	Glu	Ser	Ile 345	Glu	Arg	Asp	Gln	Val 350	Arg	Arg
Gly	Val	Leu	Ser	Thr	Asp										
		355													
(2)	INF	ORMA	FION	FOR	SEQ	ID I	NO:8	:							
	(i) SE((1	QUENC A) LI	CE CI ENGTI	HARA(H: 4)	CTER: 04 ar	ISTIC mino	CS: acio	ds						
		() () ()	B) T: C) S: C) T(YPE: TRANI OPOL	amıı DEDNI DGY:	no a ESS: line	sing sing ear	gle							
	(ii) моі	LECUI	LE T	YPE:	pro	tein								
	(xi) SEQ	QUEN	CE DI	ESCR	IPTI	ON: S	SEQ :	ID NO	D:8:					
Met 1	Ser	Glu	Asn	Lys 5	Asp	His	Val	Val	Val 10	Gly	Tyr	Thr	Glu	Lys 15	Pro
Val	Gly	Glu	Arg 20	Pro	Thr	Gly	Gly	Lys 25	Phe	Leu	Gly	Tyr	Asp 30	His	Leu
His	Phe	Trp	Val	Gly	Asn	Ala	Lys	Gln	Ala	Ala	Gly	Trp	Tyr	Thr	Ser
N	D1- -	35	ות	<u></u>	m e	m e	40 NJ-	m •	T	c 1-	Terr	45	աթ	<u></u>	C
Arg	rne 50	σту	гле	GIU	Tyr	55	AIA	Tyr	цуs	σт λ	ьеи 60	GIU	mr	σту	ъer
Arg 65	Glu	Val	Ala	Thr	His 70	Val	Val	Arg	Asn	L y s 75	Gln	Gly	Val	Thr	Leu 80
Ala	Phe	Ser	Thr	Pro 85	Tyr	Gly	Asn	Asp	Lys 90	Asp	Asn	Gln	Arg	Glu 95	Met
Asn	Gln	His	Gln 100	Ser	Leu	His	Gly	A sp 105	Gly	Val	Lys	Asp	Val 110	Ala	Phe
Ala	Val	Glu	Asp	Cys	His	Ser	Ile	Tyr	Asn	Lys	Ala	Ile	Gln	Arg	Gly
Ala	Lys	LIS Cys	Ala	Tyr	Pro	Pro	ı∠0 Gln	Asp	Leu	Lys	Asp	125 Glu	His	Gly	Ser
	130	4		4		135		- 1.		4	140			-1	. –
Val 145	Thr	Ile	Ala	Ala	Val 150	His	Thr	Tyr	Gly	Glu 155	Val	Ile	His	Thr	Phe 160
Ile	Gln	Arg	Asn	Asp 165	Tyr	Lys	Gly	Phe	Phe 170	Met	Pro	Gly	Phe	Val 175	Ala
His	Pro	Leu	Lys	Asp	Pro	Leu	Asn	Asn	Val	Leu	Pro	Asp	Ile	Ser	Tyr
Asn	Tvr	Va]	180 Asp	His	Ile	Val	Glv	185 Asn	Gln	Pro	Asp	Asn	190 Met	Met	Thr
-1011	-1-	195		0			200	-1011		0		205			
Ser	Ala 210	Ala	Asp	Trp	Tyr	Glu 215	Lys	Thr	Leu	Asp	Phe 220	His	Arg	Phe	Trp
Ser 225	Val	Asp	Asp	Ser	Met 230	Ile	His	Thr	Glu	Phe 235	Ser	Ser	Leu	Arg	Ser 240
Ile	Val	Met	Thr	Asp	Tyr	Asp	Gln	Lys	Ile	Lys	Met	Pro	Ile	Asn	Glu
Pro	Ala	Asp	Glv	245 Lvs	Ara	Lvs	Ser	Gln	250 Ile	Gln	Glu	Tvr	Ile	255 Asp	Phe
		17	260	_15	5	_15		265				-1-	270	5	
Tyr	Ala	Gly 275	Pro	Gly	Val	Gln	His 280	Ile	Ala	Leu	Asn	Thr 285	Ser	Asp	Val
Ile	Asn 290	Thr	Val	Glu	Gly	Leu 295	Arg	Ala	Arg	Gly	Val 300	Glu	Phe	Leu	Ser

-continued

Ile 305	Pro	Thr	Ser	Tyr	Tyr 310	Asp	Asn	Leu	Arg	L y s 315	Ala	Leu	Thr	Ala	Gln 320
Thr	Ser	Ile	Thr	Val 325	Lys	Glu	Asp	Leu	Asp 330	Val	Leu	Gln	Lys	Asn 335	His
Ile	Leu	Val	Asp 340	Tyr	Asp	Glu	Lys	Gly 345	Tyr	Leu	Leu	Gln	Ile 350	Phe	Thr
Lys	Pro	Val 355	Glu	Asp	Arg	Pro	Thr 360	Leu	Phe	Tyr	Glu	Ile 365	Ile	Gln	Arg
Asn	Asn 370	His	Gln	Gly	Phe	Gly 375	Ala	Gly	Asn	Phe	L y s 380	Ser	Leu	Phe	Val
Ser 385	Leu	Glu	Leu	Glu	Gln 390	Glu	Lys	Arg	Gly	Asn 395	Leu	Thr	Glu	Ile	Val 400
Lys	Asn	Ile	Tyr												
(2)	INFO	RMA	FION	FOR	SEQ	IDI	NO:9:	•							
	(1)) SE((1 (1 (0 (1	20EN0 A) L1 B) T1 C) S1 C) S1 D) T0	CE CH ENGTH YPE: TRANI OPOLO	HARAG H: 39 amin DEDNI DGY:	CTER 99 ar 10 ac ESS: line	ISTIC nino cid sing ear	cs: acio gle	ls						
	(ii)	MOI	LECUI	LE TI	YPE:	prot	cein								
Met	(xi) Ala) SE(Pro	QUENC Ala	CE DI Ala	ESCR: Asp	Ser	DN: S Pro	SEQ : Thr	ID NO	Gln	Pro	Ala	Gln	Pro	Ser
1	Lou	Nan	Cla	5	-	<u></u>	Three	Nan	10 Hig	Vol	uia		There	15 Vol	<u>c</u>]
Авр	Leu	Asn	20	Tyr	Arg	σιy	Tyr	Авр 25	HIS	vai	HIS	Trp	30	vai	σιγ
Asn	Ala	L y s 35	Gln	Ala	Ala	Thr	Tyr 40	Tyr	Val	Thr	Arg	Met 45	Gly	Phe	Glu
Arg	Val 50	Ala	Tyr	Arg	Gly	Leu 55	Glu	Thr	Gly	Ser	L y s 60	Ala	Val	Ala	Ser
His 65	Val	Val	Arg	Asn	Gly 70	Asn	Ile	Thr	Phe	Ile 75	Leu	Thr	Ser	Pro	Leu 80
Arg	Ser	Val	Glu	Gln 85	Ala	Ser	Arg	Phe	Pro 90	Glu	Asp	Glu	Ala	Leu 95	Leu
Lys	Glu	Ile	His 100	Ala	His	Leu	Glu	Arg 105	His	Gly	Asp	Gly	Val 110	Lys	Asp
Val	Ala	Phe 115	Glu	Val	Asp	Сув	Val 120	Glu	Ser	Val	Phe	Ser 125	Ala	Ala	Val
Arg	Asn 130	Gly	Ala	Glu	Val	Val 135	Ser	Asp	Val	Arg	Thr 140	Val	Glu	Asp	Glu
Asp 145	Gly	Gln	Ile	Lys	Met 150	Ala	Thr	Ile	Arg	Thr 155	Tyr	Gly	Glu	Thr	Thr 160
His	Thr	Leu	Ile	Glu 165	Arg	Ser	Gly	Tyr	Arg 170	Gly	Gly	Phe	Met	Pro 175	Gly
Tyr	Arg	Met	Glu 180	Ser	Asn	Ala	Asp	Ala 185	Thr	Ser	Lys	Phe	Leu 190	Pro	Lys
Val	Val	Leu 195	Glu	Arg	Ile	Asp	His 200	Сув	Val	Gly	Asn	Gln 205	Asp	Trp	Asp
Glu	Met 210	Glu	Arg	Val	Сув	Asp 215	Tyr	Tyr	Glu	Lys	Ile 220	Leu	Gly	Phe	His
Arg 225	Phe	Trp	Ser	Val	Asp 230	Asp	Lys	Asp	Ile	Cys 235	Thr	Glu	Phe	Ser	Ala 240

-continued

	цуз	Der	шe	245	Met	AId	Ser	PLO	250	Asp	шe	vai	цув	255	Pro
Ile	Asn	Glu	Pro 260	Ala	Lys	Gly	Lys	Lys 265	Gln	Ser	Gln	Ile	Glu 270	Glu	Tyr
Val	Asp	Phe 275	Tyr	Asn	Gly	Ala	Gly 280	Val	Gln	His	Ile	Ala 285	Leu	Arg	Thr
Asn	Asn 290	Ile	Ile	Asp	Ala	Ile 295	Thr	Asn	Leu	Lys	Ala 300	Arg	Gly	Thr	Glu
Phe 305	Ile	Lys	Val	Pro	Glu 310	Thr	Tyr	Tyr	Glu	Asp 315	Met	Lys	Ile	Arg	Leu 320
Lys	Arg	Gln	Gly	Leu 325	Val	Leu	Asp	Glu	Asp 330	Phe	Glu	Thr	Leu	Lys 335	Ser
Leu	Asp	Ile	Leu 340	Ile	Asp	Phe	Asp	Glu 345	Asn	Gly	Tyr	Leu	Leu 350	Gln	Leu
Phe	Thr	Lys 355	His	Leu	Met	Asp	Arg 360	Pro	Thr	Val	Phe	Ile 365	Glu	Ile	Ile
Gln	Arg 370	Asn	Asn	Phe	Ser	Gl y 375	Phe	Gly	Ala	Gly	Asn 380	Phe	Arg	Ala	Leu
Phe 385	Glu	Ala	Ile	Glu	Arg 390	Glu	Gln	Ala	Leu	Arg 395	Gly	Thr	Leu	Ile	
(2)	INFO	ORMA:	FION	FOR	SEQ	ID 1	NO:1():							
	(i)) SE((2 (1 (0 (1	QUENC A) LH B) T C) S C) S C) T C	CE CH ENGTH YPE: TRANI DPOLO	HARAG H: 34 amin DEDNI DGY:	CTERI 46 an 10 ac ESS: line	ISTIC nino cid sino ear	cS: acio gle	ls						
	(ii)) MOI	LECUI	LE TI	YPE:	prot	cein								
	(ii) (xi)) MOI) SE(LECUI QUENC	LE TY	YPE: ESCR:	prot IPTIC	cein DN: S	SEQ I	ed no	D:10	:				
Met 1	(ii) (xi) Ala) MOI) SE(Ser	LECUI QUENC Glu	LE TY CE DI Gln 5	YPE: ESCR: Asn	prot IPTIC Pro	zein DN: S Leu	Gly	ID NO Leu 10	D:10 Leu	: Gly	Ile	Glu	Phe 15	Thr
Met 1 Glu	(ii) (xi) Ala Phe) MOI) SE(Ser Ala	LECUI QUENC Glu Thr 20	LE T CE DI Gln 5 Pro	YPE: ESCR: Asn Asp	prot IPTIC Pro Leu	Leu Asp	Gly Phe 25	ID NG Leu 10 Met	Leu His	Gly Lys	Ile Val	Glu Phe 30	Phe 15 Ile	Thr Asp
Met 1 Glu Phe	(ii) (xi) Ala Phe Gly) MOI) SE(Ser Ala Phe 35	LECUI QUENC Glu Thr 20 Ser	LE T CE DI Gln 5 Pro Lys	YPE: ESCR: Asn Asp Leu	prot IPTIC Pro Leu Lys	Leu Leu Asp Lys 40	Gly Phe 25 His	ID NO Leu 10 Met Lys	Leu His Gln	Gly Lys Lys	Ile Val Asp 45	Glu Phe 30 Ile	Phe 15 Ile Val	Thr Asp Tyr
Met 1 Glu Phe Tyr	(ii) (xi) Ala Phe Gly Lys 50) MOI) SE(Ser Ala Phe 35 Gln	LECUI QUENC Glu Thr 20 Ser Asn	LE TY Gln 5 Pro Lys Asp	YPE: ESCR: Asn Asp Leu Ile	prot IPTIC Pro Leu Lys Asn 55	Leu Asp Lys 40 Phe	Gly Phe 25 His Leu	Leu 10 Met Lys Leu	Leu His Gln Asn	Gly Lys Lys Asn 60	Ile Val Asp 45 Glu	Glu Phe 30 Ile Lys	Phe 15 Ile Val Gln	Thr Asp Tyr Gly
Met 1 Glu Phe Tyr Phe 65	(ii) (xi) Ala Phe Gly Lys 50 Ser) MOI) SEQ Ser Ala 35 Gln Ala	LECUI QUENC Glu Thr 20 Ser Asn Gln	LE TY CE DI Gln 5 Pro Lys Asp Phe	YPE: ESCR. Asn Asp Leu Ile Ala 70	prot IPTIC Pro Leu Lys Asn 55 Lys	cein DN: S Leu Asp Lys 40 Phe Thr	GLQ : Gly Phe 25 His Leu His	ID NG Leu 10 Met Lys Leu Gly	D:10 Leu His Gln Asn Pro 75	Gly Lys Lys Asn 60 Ala	Ile Val Asp 45 Glu Ile	Glu Phe 30 Ile Lys Ser	Phe 15 Ile Val Gln Ser	Thr Asp Tyr Gly Met 80
Met 1 Glu Phe 7 yr Phe 65 Gly	(ii) (xi) Ala Phe Gly Lys 50 Ser Trp) MOI) SEQ Ser Ala Phe 35 Gln Ala Arg	LECUI QUENC Glu Thr 20 Ser Asn Gln Val	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85	YPE: ESCR: Asn Asp Leu Ile Ala 70 Asp	prot IPTIC Pro Leu Lys Asn 55 Lys Ala	Leu Asp Lys 40 Phe Thr Asn	Gly Phe 25 His Leu His Phe	ID NC Leu 10 Met Lys Leu Gly Ala 90	D:10 Leu His Gln Asn Pro 75 Phe	Gly Lys Lys Asn 60 Ala Glu	Ile Val Asp 45 Glu Ile Gly	Glu Phe 30 Ile Lys Ser Ala	Phe 15 Ile Val Gln Ser Val 95	Thr Asp Tyr Gly Met 80 Ala
Met 1 Glu Phe 5 Gly Arg	(ii) (xi) Ala Phe Gly Lys 50 Ser Trp Gly) MOI) SE(Ser Ala Phe 35 Gln Ala Arg Ala	LECUI QUENA Glu Thr 20 Ser Asn Gln Val Lys 100	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85 Pro	YPE: ESCR: Asn Asp Leu Ile Ala 70 Asp Ala	prot IPTIC Pro Leu Lys Asn 55 Lys Ala Ala	Leu Asp Lys 40 Phe Thr Asn Asp	Gly Phe 25 His Leu His Phe Glu	ID NG Leu 10 Met Lys Leu Gly Ala 90 Val	D:10 Leu His Gln Asn Pro 75 Phe Lys	Gly Lys Lys Asn 60 Ala Glu Asp	Ile Val Asp 45 Glu Ile Gly Leu	Glu Phe 30 Lys Ser Ala Pro 110	Phe 15 Ile Val Gln Ser Val 95 Tyr	Thr Asp Tyr Gly Met 80 Ala Pro
Met 1 Glu Phe 5 Gly Arg Ala	(ii) (xi) Ala Phe Gly Lys 50 Ser Trp Gly Ile) MOI) SEQ Ser Ala Phe 35 Gln Ala Arg Ala Tyr 115	LECUI QUENC Glu Thr 20 Ser Asn Gln Val Lys 100 Gly	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85 Pro Ile	YPE: ESCR: Asn Asp Leu Ile Ala 70 Asp Ala Gly	prot IPTIC Pro Leu Lys Lys Lys Ala Ala Asp	Leu Asp Lys 40 Phe Thr Asn Asp Ser 120	Gly Phe 25 His Leu His Glu 105 Leu	ID NC Leu 10 Met Lys Leu Gly Ala 90 Val Ile	Leu His Gln Asn Pro 75 Phe Lys Tyr	Gly Lys Lys Asn 60 Ala Glu Asp Phe	Ile Val Asp 45 Glu Ile Gly Leu Ile 125	Glu Phe 30 Lys Ser Ala Pro 110 Asp	Phe 15 Ile Val Gln Ser Val 95 Tyr Thr	Thr Asp Tyr Gly Met 80 Ala Pro Phe
Met 1 Glu Phe 65 Gly Arg Ala Gly	<pre>(ii) (xi) Ala Phe Gly Lys So Ser Trp Gly Ile Asp 130</pre>) MOI) SEQ Ser Ala Phe 35 Gln Ala Arg Ala Tyr 115 Asp	QUENC Glu Thr 20 Ser Asn Gln Val Lys 100 Gly Asn	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85 Pro Ile Asn	YPE: ESSCR: Asn Asp Leu Ile Ala Ala Gly Ile	prot IPTIC Pro Leu Lys Asn 55 Lys Ala Ala Asp Tyr 135	Leu Asp Lys 40 Phe Thr Asn Asp Ser 120 Thr	Gly Phe 25 His Leu His Phe Glu 105 Leu Ser	ID NO Leu 10 Met Lys Leu Gly Ala 90 Val Ile Asp	Leu His Gln Asn Pro 75 Phe Lys Tyr Phe	: Gly Lys Lys Asn 60 Ala Glu Phe Glu 140	Ile Val Asp 45 Glu Ile Gly Leu Ile 125 Ala	Glu Phe 30 Lys Ser Ala Pro 110 Asp Leu	Phe 15 Ile Val Gln Ser Val 95 Tyr Thr Asp	Thr Asp Tyr Gly Met 80 Ala Pro Phe Glu
Met 1 Glu Phe 65 Gly Arg Ala Gly Pro 145	<pre>(iii) (xi) Ala Phe Gly Lys 50 Ser Trp Gly Ile Asp 130 Ile</pre>) MOI) SEQ Ser Ala Phe 35 Gln Ala Arg Ala Arg 115 Asp Ile	LECUI QUENC Glu Thr 20 Ser Asn Gln Val Lys 100 Gly Asn Thr	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85 Pro Ile Asn Gln	YPE: Asn Asp Leu Ile Ala 70 Asp Ala Gly Ile Glu 150	prot IPTIC Pro Leu Lys Lys Ala Ala Ala Tyr 135 Lys	Lein Asp Lys 40 Phe Thr Asn Asp Ser 120 Thr Gly	Gly Phe 25 His Leu His Glu 105 Leu Ser Phe	ID NC Leu 10 Met Lys Leu Gly Ala 90 Val Ile Asp Ile	Leu His Gln Asn Pro 75 Phe Lys Tyr Phe Glu	: Gly Lys Lys Asn 60 Ala Glu Asp Phe Glu 140 Val	Ile Val Asp 45 Glu Ile 125 Ala Asp	Glu Phe 30 Lys Ser Ala Pro 110 Asp Leu His	Phe 15 Ile Val Gln Ser Val S5 Tyr Thr Asp Leu	Thr Asp Tyr Gly Met 80 Ala Pro Phe Glu Thr 160
Met 1 Glu Phe 65 Gly Arg Ala Gly Pro 145 Asn	<pre>(ii) (xi) Ala Phe Gly Lys 50 Ser Trp Gly Ile Asp 130 Ile Asn</pre>) MOI) SE(Ser Ala Phe 35 Gln Ala Ala Ala Ala Tyr 115 Asp Ile Val	LECUI QUENC Glu Thr 20 Ser Asn Gln Val Lys 100 Gly Asn Thr His	LE TY CE DI Gln 5 Pro Lys Asp Phe Glu 85 Pro Ile Asn Gln Lys 165	YPE: ESSCR: Asn Asp Leu Ile Ala 70 Asp Ala Gly Ile Glu 150 Gly	prot IPTIC Pro Leu Lys Asn 55 Lys Ala Ala Asp Tyr 135 Lys Lys	Leu Asp Lys 40 Phe Thr Asn Asp Ser 120 Thr Gly Met	Gly Phe 25 His Leu His Glu Ser Phe Glu Glu	ID NC Leu 10 Met Lys Leu Gly Ala 90 Val Ile Asp Ile Tyr 170	Leu His Gln Asn Pro 75 Phe Lys Tyr Phe Glu 155 Trp	: Gly Lys Lys Asn 60 Ala Glu 140 Val Ser	Ile Val Asp 45 Glu Ile 125 Ala Asp Asn	Glu Phe 30 Lys Ser Ala Pro 110 Asp Leu His Phe	Phe 15 Ile Val Gln Ser Val S5 Tyr Thr Asp Leu Tyr 175	Thr Asp Tyr Gly Met 80 Ala Pro Phe Glu Thr 160 Lys

-continued

Gln	Thr	Ala 195	Leu	Ile	Ser	Tyr	Ala 200	Leu	Arg	Ser	Pro	Asp 205	Gly	Ser	Phe
Cys	Ile 210	Pro	Ile	Asn	Glu	Gly 215	Lys	Gly	Asp	Asp	Arg 220	Asn	Gln	Ile	Asp
Glu 225	Tyr	Leu	Lys	Glu	Tyr 230	Asp	Gly	Pro	Gly	Val 235	Gln	His	Leu	Ala	Phe 240
Arg	Ser	Arg	Asp	Ile 245	Val	Ala	Ser	Leu	Asp 250	Ala	Met	Glu	Gly	Ser 255	Ser
Ile	Gln	Thr	Leu 260	Asp	Ile	Ile	Pro	Glu 265	Tyr	Tyr	Asp	Thr	Ile 270	Phe	Glu
Lys	Leu	Pro 275	Gln	Val	Thr	Glu	A sp 280	Arg	Asp	Arg	Ile	L y s 285	His	His	Gln
Ile	Leu 290	Val	Asp	Gly	Asp	Glu 295	Asp	Gly	Tyr	Leu	Leu 300	Gln	Ile	Phe	Thr
L y s 305	Asn	Leu	Phe	Gly	Pro 310	Ile	Phe	Ile	Glu	Ile 315	Ile	Gln	Arg	Lys	Asn 320
Asn	Leu	Gly	Phe	Gly 325	Glu	Gly	Asn	Phe	Lys 330	Ala	Leu	Phe	Glu	Ser 335	Ile
Glu	Arg	Asp	Gln 340	Val	Arg	Arg	Gly	Val 345	Leu						
(2)	INFO	ORMAT	LION	FOR	SEQ	ID N	NO:11	1:							
		(1 (1 (0 (1	A) LH B) TY C) SY D) T(ENGTI (PE: TRANI DPOLO	H: 39 amir DEDNH DGY:	93 an no ao ESS: line	nino cid sing ear	acio gle	ls						
	(11)	MOT	FOIL												
	(11)	, 1101		JE TI	PE:	prot	tein								
	(xi)) SE(QUENC	LE T	(PE: ESCRI	prot IPTIC	DN: S	SEQ I	ED NG	: 11	:				_1
Met 1	(xi) Thr) SEÇ Thr	DUENC Tyr	CE DI Ser 5	(PE: ESCRI Asp	prot IPTIC Lys	Gly	SEQ I Ala	ID NO Lys 10	9:11 Pro	: Glu	Arg	Gly	Arg 15	Phe
Met 1 Leu	(xi) Thr His) SEÇ Thr Phe	UENC Tyr His 20	LE T: CE DI Ser 5 Ser	VPE: ESCRI Asp Val	prot IPTIC Lys Thr	CDN: S Gly Phe	SEQ I Ala Trp 25	ID NO Lys 10 Val	Pro Gly	Glu Asn	Arg Ala	Gly Lys 30	Arg 15 Gln	Phe Ala
Met 1 Leu Ala	(xi) Thr His Ser	Phe 35	UENO Tyr His 20 Tyr	LE T Ser 5 Ser Cys	VPE: ESCRI Asp Val Ser	prot IPTIC Lys Thr Lys	Cly Gly Phe Met 40	Ala Trp 25 Gly	ID NG Lys 10 Val Phe	Pro Gly Glu	Glu Asn Pro	Arg Ala Leu 45	Gly Lys 30 Ala	Arg 15 Gln Tyr	Phe Ala Arg
Met 1 Leu Ala Gly	(xi) Thr His Ser Leu 50) SEQ Thr Phe 35 Glu	UENO Tyr His 20 Tyr Thr	LE T CE DI Ser 5 Ser Cys Gly	VPE: ESCRI Asp Val Ser Ser	prot LPTIC Lys Thr Lys Arg 55	Cly Gly Phe Met 40 Glu	SEQ I Ala Trp 25 Gly Val	ID NG Lys 10 Val Phe Val	Pro Gly Glu Ser	Glu Asn Pro His 60	Arg Ala Leu 45 Val	Gly Lys 30 Ala Ile	Arg 15 Gln Tyr Lys	Phe Ala Arg Gln
Met 1 Leu Ala Gly 65	(xi) Thr His Ser Leu 50 Lys) SEQ Thr Phe 35 Glu Ile	UENC Tyr His 20 Tyr Thr Val	LE TY SE DI Ser Ser Cys Gly Phe	VPE: ESCRI Asp Val Ser Ser Val 70	prot IPTIC Lys Thr Lys Arg 55 Leu	Gly Phe Met 40 Glu Ser	Ala Trp 25 Gly Val Ser	ID NG Lys 10 Val Phe Val Ala	D:11 Pro Gly Glu Ser Leu 75	Glu Asn Pro His 60 Asn	Arg Ala Leu 45 Val Pro	Gly Lys 30 Ala Ile Trp	Arg 15 Gln Tyr Lys Asn	Phe Ala Arg Gln Lys 80
Met 1 Ala Gly 65 Glu	(11) (xi) Thr His Ser Leu 50 Lys Met) SE(Thr Phe 35 Glu Ile Gly	QUENC Tyr His 20 Tyr Thr Val Asp	LE TY CE DI Ser 5 Ser Cys Gly Phe His 85	YPE: ESCRI Asp Val Ser Ser Val 70 Leu	prot IPTIC Lys Thr Lys Arg 55 Leu Val	Cein CN: S Gly Phe Met 40 Glu Ser Lys	GEQ : Ala Trp 25 Gly Val Ser His	ID NC Lys 10 Val Phe Val Ala Gly 90):11 Pro Gly Glu Ser Leu 75 Asp	Glu Asn Pro His 60 Asn Gly	Arg Ala Leu 45 Val Pro Val	Gly Lys 30 Ala Ile Trp Lys	Arg 15 Gln Tyr Lys Asn Asp 95	Phe Ala Arg Gln Lys 80 Ile
Met 1 Leu Ala Gly 65 Glu Ala	(ii) (xi) Thr His Ser Leu 50 Lys Met Phe) SEQ Thr Phe 35 Glu Ile Gly Glu	QUENC Tyr His 20 Tyr Thr Val Asp Val 100	LE TY CE DI Ser 5 Ser Cys Gly Phe His 85 Glu	(PE: SSCR] Asp Val Ser Ser Val 70 Leu Asp	prot IPTIC Lys Thr Lys Arg 55 Leu Val Cys	Cein Cly Phe Met 40 Glu Ser Lys Asp	Ala Trp 25 Gly Val Ser His Tyr 105	ID NO Lys 10 Val Phe Val Ala Gly 90 Ile	Gly Glu Ser Leu 75 Asp Val	Glu Asn Pro His 60 Asn Gly Gln	Arg Ala Leu 45 Val Pro Val Lys	Gly Lys 30 Ala Ile Trp Lys Ala 110	Arg 15 Gln Tyr Lys Asn Asp 95 Arg	Phe Ala Arg Gln Lys 80 Ile Glu
Met 1 Leu Ala Gly 65 Glu Ala Arg	(ii) (xi) Thr His Ser Leu 50 Lys Met Phe Gly	<pre>> SEC Thr Phe 35 Glu Ile Gly Glu Ala 115</pre>	QUENC Tyr His 20 Tyr Thr Val Asp Val 100 Lys	LE TY SET Ser Cys Gly Phe His 85 Glu Ile	(PE: ESCR: Asp Val Ser Ser Val 70 Leu Asp Met	prot IPTIC Lys Thr Lys Lys Lys Leu Val Cys Arg	Glu Glu Ser Lys Glu Lys Glu 120	SEQ : Ala Trp 25 Gly Val Ser His Tyr 105 Pro	ID NG Lys 10 Val Phe Val Ala Gly 90 Ile Trp	D:11 Pro Gly Glu Ser Leu 75 Asp Val Val	Glu Asn Pro His 60 Asn Gly Gln Glu	Arg Ala Leu 45 Val Pro Val Lys Gln 125	Gly Lys 30 Ala Ile Trp Lys Ala 110 Asp	Arg 15 Gln Tyr Lys Asn Asp 95 Arg Lys	Phe Ala Arg Gln Lys 80 Ile Glu Phe
Met 1 Leu Ala Gly 65 Glu Ala Arg Gly	(11) (xi) Thr His Ser Leu So Lys Met Gly Lys 130	<pre>> SEQ Thr Phe 35 Glu Ile Gly Glu Ala 115 Val</pre>	QUENC Tyr His 20 Tyr Thr Val Asp Val 100 Lys Lys	LE TI SET 5 Ser Cys Gly Phe His 85 Glu Ile Phe	(PE: ESCR: Asp Val Ser Ser Val 70 Leu Asp Met Ala	prot IPTIC Lys Thr Lys Arg 55 Leu Val Cys Arg Val 135	Cein CN: S Gly Phe Met 40 Glu Ser Lys Asp Glu 120 Leu	SEQ : Ala Trp 25 Gly Val Ser His Ser Tyr 105 Pro Gln	ID NG Lys 10 Val Phe Val Ala Gly 90 Ile Trp Thr	D:11 Pro Gly Glu Ser Leu 75 Asp Val Val Tyr	Glu Asn Pro His 60 Asn Gly Glu Glu 140	Arg Ala Leu 45 Val Pro Val Lys Gln 125 Asp	Gly Lys 30 Ala Ile Trp Lys Ala 110 Asp Thr	Arg 15 Gln Tyr Lys Asn Asp 95 Arg Lys Thr	Phe Ala Arg Gln Lys 80 Glu Phe His
Met 1 Leu Ala Gly 65 Glu Ala Arg Gly Thr 145	(11) (xi) Thr His Ser Leu So Lys Met Gly Lys 130 Leu	<pre>> SEQ Thr Phe 35 Glu Ile Glu Glu Glu Glu Ala 115 Val</pre>	QUENC Tyr His 20 Tyr Thr Val 100 Lys Glu	LE TI: Ser 5 Ser Cys Gly Phe His 85 Glu Ile Phe Lys	(PE: ESCR: Asp Val Ser Ser Val 70 Leu Asp Met Ala Met 150	prot IPTIC Lys Thr Lys Arg 55 Leu Val Cys Arg Val 135 Asn	Cein CN: S Gly Phe Met 40 Glu Ser Lys Asp Glu 120 Leu Tyr	SEQ : Ala Trp 25 Gly Val Ser His Tyr 105 Pro Gln Ile	ID NG Lys 10 Val Phe Val Ala Gly 90 Ile Trp Thr Gly	D:11 Pro Gly Glu Ser Leu 75 Asp Val Val Tyr Gln 155	Glu Asn Pro His 60 Asn Gly Glu Glu Glu 140 Phe	Arg Ala Leu Val Pro Val Lys Gln 125 Asp Leu	Gly Lys 30 Ala Trp Lys Ala 110 Asp Thr Pro	Arg 15 Gln Tyr Lys Asn 95 Arg Lys Thr Gly	Phe Ala Arg Gln Lys 80 Ile Glu Phe His Tyr 160
Met 1 Leu Ala Gly 65 Glu Ala Arg Gly Thr 145 Glu	(11) (xi) Thr His Ser Leu 50 Lys Met Clys 130 Leu Ala	<pre>> SEQ Thr Phe 35 Glu Ile Glu Glu Glu Ala 115 Val Val Pro</pre>	QUENC Tyr His 20 Tyr Thr Val 100 Lys Glu Ala	LE TI SET DI Ser Ser Cys Gly Phe His 85 Glu Ile Phe Lys Phe 165	(PE: ESCR: Asp Val Ser Ser Val 70 Leu Asp Met Ala Met 150 Met	prot IPTIC Lys Thr Lys Arg 55 Leu Val Cys Arg Val 135 Asn Asp	Cein Chief Ser Gly Phe Met 40 Glu Clu Ser Lys Asp Glu 120 Leu Tyr Pro	SEQ : Ala Trp 25 Gly Val Ser His Ser Tyr 105 Pro Gln Ile Leu	ID NG Lys 10 Val Phe Val Ala Gly 11e Thr Gly Leu 170	D:11 Pro Gly Glu Ser Leu 75 Asp Val Val Tyr Gln 155 Pro	Glu Asn Pro His 60 Asn Gly Glu Glu Glu Lys	Arg Ala Leu 45 Val Pro Val Lys Gln 125 Asp Leu Leu	Gly Lys 30 Ala Ile Trp Lys Ala 110 Asp Thr Pro Pro	Arg 15 Gln Tyr Lys Asn 95 Arg Lys Thr Gly Lys 175	Phe Ala Arg Gln Lys 80 Ile Glu Phe His Tyr 160 Cys

-continued

Met	Val	Ser 195	Ala	Ser	Glu	Trp	Ty r 200	Leu	Lys	Asn	Leu	Gln 205	Phe	His	Arg						
Phe	Trp 210	Ser	Val	Asp	Asp	Thr 215	Gln	Val	His	Thr	Glu 220	Tyr	Ser	Ser	Leu						
Arg 225	Ser	Ile	Val	Val	Ala 230	Asn	Tyr	Glu	Glu	Ser 235	Ile	Lys	Met	Pro	Ile 240						
Asn	Glu	Pro	Ala	Pro 245	Gly	Lys	Lys	Lys	Ser 250	Gln	Ile	Gln	Glu	T y r 255	Val						
Asp	Tyr	Asn	Gly 260	Gly	Ala	Gly	Val	Gln 265	His	Ile	Ala	Leu	L y s 270	Thr	Glu						
Asp	Ile	Ile 275	Thr	Ala	Ile	Arg	His 280	Leu	Arg	Glu	Arg	Gly 285	Leu	Glu	Phe						
Leu	Ser 290	Val	Pro	Ser	Thr	Ty r 295	Tyr	Lys	Gln	Leu	Arg 300	Glu	Lys	Leu	Lys						
Thr 305	Ala	Lys	Ile	Lys	Val 310	Lys	Glu	Asn	Ile	Asp 315	Ala	Leu	Glu	Glu	Leu 320						
Lys	Ile	Leu	Val	Asp 325	Tyr	Asp	Glu	Lys	Gly 330	Tyr	Leu	Leu	Gln	Ile 335	Phe						
Thr	Lys	Pro	Val 340	Gln	Asp	Arg	Pro	Thr 345	Leu	Phe	Leu	Glu	Val 350	Ile	Gln						
Arg	His	Asn 355	His	Gln	Gly	Phe	Gly 360	Ala	Gly	Asn	Phe	Asn 365	Ser	Leu	Phe						
Lys	Ala 370	Phe	Glu	Glu	Glu	Gln 375	Asn	Leu	Arg	Gly	Asn 380	Leu	Thr	Asn	Met						
Glu 385	Thr	Asn	Gly	Val	Val 390	Pro	Gly	Met													
(2)	INFO	ORMA	FION	FOR	SEQ	ID 1	NO:12	2:													
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																					
	(ii) MOLECULE TYPE: DNA (genomic)																				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:																				
GTA	AAGCTTCG ACCAGATGCG CCAG															24					
(2)	INFO	ORMA	FION	FOR	SEQ	ID 1	NO:13	3:													
	(i)) SE((1 (1 (0 (1	QUENC A) LI B) T C) S C) S C) T	CE CH ENGTH YPE: TRANI OPOLO	HARAG H: 24 nuci DEDNI DGY:	CTERI 4 bas leic ESS: line	ISTIC se pa acic sinc sar	CS: airs d gle													
	(ii)) МОІ	LECUI	LE TI	YPE:	DNA	(ger	nomio	2)												
	(xi)) SEQ	QUENC	CE DI	ESCR	IPTIC	ON: S	SEQ I	ED NO	0:13	:										
TGG	AATTO	200 1	ICTT	GCCGI	AC CO	GCC											24				

60

What is claimed is:

1. A method for modifying a strain of *Saccharopolyspora* erythraea containing a melA gene and which produces erythromycin, the method comprising the step of integrating into said strain of *Saccharopolyspora erythraea* a plasmid which prevents proper transcription of the melA gene, wherein said plasmid is plasmid pFL1046 deposited with the Agricultural Research Service Culture Collection having Accession No. B-30276.

* * * * *