312-888-1129

Publications

RESEARCH PAPERS


FERMACHANNELING / FERMASCREENING


Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in Saccharopolyspora erythraea. Weber J.M., Reeves A., Cernota, W.H., Wesley R.K. (2017) In: Reeves A. (eds) In Vitro Mutagenesis. Methods in Molecular Biology, vol 1498. Humana Press, New York, NY PDF


Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis. Andrij Fedashchin, William H. Cernota, Melissa C. Gonzalez, Benjamin I. Leach, Noelle Kwan, Roy K. Wesley, J. Mark Weber. FEMS Microbiol Lett. 2015 Nov;362(22). pii: fnv180. doi: 10.1093/femsle/fnv180. Epub 2015 Oct 13. PDF


Metabolic engineering of antibiotic ­producing actinomycetes using in vitro transposon mutagenesis.

AR Reeves, JM Weber ­ Methods in molecular biology (Clifton, NJ), 2012 ­ Volume834,153-­175, DOI:10.1007/978­-1-­61779-­483-­4_11 Springer PDF


An erythromycin process improvement using the diethyl methylmalonate­responsive (Dmr) phenotype of the Saccharopolyspora erythraea mutB strain.

J. Mark Weber, William H. Cernota, Melissa C. Gonzalez, Benjamin I. Leach, Andrew R. Reeves, and Roy K. Wesley. Applied Microbiology and Biotechnology Volume 93, Number 4 2012, 1575­-1583 PDF


Engineering of the methylmalonyl-­CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production.

Andrew R. Reeves, Igor A. Brikun, William H. Cernota, Benjamin I. Leach, Melissa C. Gonzalez, J. Mark Weber. Metabolic Engineering 2007 vol. 9 (3) pp. 293-­303. PDF


Effects of methylmalonyl-­CoA mutase gene knockouts on erythromycin production in carbohydrate­based and oil­based fermentations of Saccharopolyspora erythraea.

Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM.

J Ind Microbiol Biotechnol. 2006 vol. 33 (7) pp. 600-­609 PDF


Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum

Andrew R. Reeves, William H. Cernota, Igor A. Brikun, Roy K. Wesley and J. Mark Weber, 2004. Metabolic Engineering, 6(4):300-­312. Available online 7 June 2004 PDF


FERMAFLAVONES


Biotransformation and recovery of the isoflavones genistein and daidzein from industrial antibiotic fermentations.

J. Mark Weber, Andrew R. Reeves, Ramya Seshadri, William H. Cernota, Melissa C. Gonzalez, Danielle L. Gray, and Roy K. Wesley. Applied Microbiology and Biotechnology, July 2013 vol. 97 (14): 6427-­6437 PDF


Knockout of the Erythromycin Biosynthetic Cluster Gene, eryBI, Blocks Isoflavone Glucoside Bioconversion during Erythromycin Fermentations in Aeromicrobium erythreum but Not in Saccharopolyspora erythraea.

A. R Reeves, R Seshadri, I. A Brikun, W. H Cernota, M. C Gonzalez, and J. M Weber. Applied and Environmental Microbiology 2008 vol. 74 (23) pp. 7383­- 7390 PDF


Isolation of isoflavones from soy­based fermentations of the erythromycin­producing bacterium Saccharopolyspora erythraea.

Hessler PE, Larsen PE, Constantinou AI, Schram KH, Weber JM

Appl Microbiol Biotechnol. 1997 Apr;47(4):398-­404.

PDF


RELATED PUBLICATIONS


The erythromycin biosynthetic gene cluster of Aeromicrobium erythreum.

Brikun IA, Reeves AR, Cernota WH, Luu MB, Weber JM J Ind Microbiol Biotechnol. 2004 Aug;31(7):335­-44. Epub 2004 Jul 15. PDF


Analysis of an 8.1­kb DNA fragment contiguous with the erythromycin gene cluster of Saccharopolyspora erythraea in the eryCI-flanking region.

Reeves AR, Weber G, Cernota WH, Weber JM

Antimicrob Agents Chemother. 2002 Dec;46(12):3892­-9. PDF


An erythromycin derivative produced by targeted gene disruption in

Saccharopolyspora erythraea.

Weber JM1, Leung JO, Swanson SJ, Idler KB, McAlpine JB.

Science. 1991 Apr 5;252(5002):114-7. PDF

(placeholder)